17.4. 总结

在这一章,我们简单介绍了机器人系统的基本概念,包括通用机器人操作系统、感知系统、规划系统和控制系统等,给读者对机器人问题的基本认识。对通用机器人操作系统部分,我们回顾了其中的基本概念,并通过代码实例让读者对ROS能有直接的体验,体会到搭建一个简单机器人系统的乐趣。当前,机器人是一个快速发展的人工智能分支,许多实际问题都需要通过机器人算法和系统设计的进一步发展得到解决。

17.4.1. 参考文献

Aradi, 2020

Aradi, S. (2020). Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems.

Brunke et al., 2021

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P. (2021). Safe learning in robotics: from learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems, 5.

Campos et al., 2021

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6), 1874–1890.

Ding et al., 2019

Ding, M., Wang, Z., Sun, J., Shi, J., & Luo, P. (2019). Camnet: coarse-to-fine retrieval for camera re-localization. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2871–2880).

Huang et al., 2018

Huang, H., Shen, Y., Sun, J., & Lu, C. (2018). Navigationnet: a large-scale interactive indoor navigation dataset. arXiv preprint arXiv:1808.08374.

Huang et al., 2021

Huang, J., Xie, S., Sun, J., Ma, Q., Liu, C., Lin, D., & Zhou, B. (2021 , 16–18 Nov). Kober, J., Ramos, F., & Tomlin, C. (Eds.). Learning a decision module by imitating driver’s control behaviors. Proceedings of the 2020 Conference on Robot Learning (pp. 1–10). PMLR. URL: https://proceedings.mlr.press/v155/huang21a.html

Li et al., 2023

Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S., Martín-Martín, R., … others. (2023). Behavior-1k: a benchmark for embodied ai with 1,000 everyday activities and realistic simulation. Conference on Robot Learning (pp. 80–93).

Li et al., 2021a

Li, Q., Peng, Z., Xue, Z., Zhang, Q., & Zhou, B. (2021). Metadrive: composing diverse driving scenarios for generalizable reinforcement learning. ArXiv preprint, abs/2109.12674. URL: https://arxiv.org/abs/2109.12674

Li et al., 2021b

Li, Q., Peng, Z., & Zhou, B. (2021). Efficient learning of safe driving policy via human-ai copilot optimization. International Conference on Learning Representations.

Lu & Shi, 2021

Lu, S., & Shi, W. (2021). The emergence of vehicle computing. IEEE Internet Computing, 25(3), 18-22. doi:10.1109/MIC.2021.3066076

Maruyama et al., 2016

Maruyama, Y., Kato, S., & Azumi, T. (2016). Exploring the performance of ros2. Proceedings of the 13th ACM SIGBED International Conference on Embedded Software (EMSOFT) (pp. 1–10).

Pan et al., 2020

Pan, B., Sun, J., Leung, H. Y. T., Andonian, A., & Zhou, B. (2020). Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 5(3), 4867-4873. doi:10.1109/LRA.2020.3004325

Peng et al., 2021a

Peng, Z., Li, Q., Hui, K. M., Liu, C., & Zhou, B. (2021). Learning to simulate self-driven particles system with coordinated policy optimization. Advances in Neural Information Processing Systems, 34.

Peng et al., 2021b

Peng, Z., Li, Q., Liu, C., & Zhou, B. (2021). Safe driving via expert guided policy optimization. 5th Annual Conference on Robot Learning.

Qiu et al., 2022

Qiu, J., Chen, L., Gu, X., Lo, F. P.-W., Tsai, Y.-Y., Sun, J., … Lo, B. (2022). Egocentric human trajectory forecasting with a wearable camera and multi-modal fusion. IEEE Robotics and Automation Letters, (), 1-8. doi:10.1109/LRA.2022.3188101

Ren et al., 2022

Ren, J., Liang, W., Yan, R., Mai, L., Liu, S., & Liu, X. (2022). Megba: a high-performance and distributed library for large-scale bundle adjustment. European Conference on Computer Vision.

Sun et al., 2022a

Sun, J., Huang, D.-A., Lu, B., Liu, Y.-H., Zhou, B., & Garg, A. (2022). Plate: visually-grounded planning with transformers in procedural tasks. IEEE Robotics and Automation Letters, 7(2), 4924-4930. doi:10.1109/LRA.2022.3150855

Sun et al., 2022b

Sun, J., Kousik, S., Fridovich-Keil, D., & Schwager, M. (2022). Self-supervised traffic advisors: distributed, multi-view traffic prediction for smart cities. arXiv preprint.

Sun et al., 2021a

Sun, J., Sun, H., Han, T., & Zhou, B. (2021 , 16–18 Nov). Kober, J., Ramos, F., & Tomlin, C. (Eds.). Neuro-symbolic program search for autonomous driving decision module design. Proceedings of the 2020 Conference on Robot Learning (pp. 21–30). PMLR. URL: https://proceedings.mlr.press/v155/sun21a.html

Sun et al., 2021b

Sun, J., Yu, L., Dong, P., Lu, B., & Zhou, B. (2021). Adversarial inverse reinforcement learning with self-attention dynamics model. IEEE Robotics and Automation Letters, 6(2), 1880–1886.

Wang et al., 2023

Wang, C., Fan, L., Sun, J., Zhang, R., Fei-Fei, L., Xu, D., … Anandkumar, A. (2023). Mimicplay: long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422.

Xu et al., 2019

Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., & Li, H. (2019). Depth completion from sparse lidar data with depth-normal constraints. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2811–2820).

Yi et al., 2020

Yi, H., Shi, S., Ding, M., Sun, J., Xu, K., Zhou, H., … Wang, G. (2020). Segvoxelnet: exploring semantic context and depth-aware features for 3d vehicle detection from point cloud. 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2274–2280).